Encapsulation of "core" eIF3, regulatory components of eIF3 and mRNA into liposomes, and their subsequent uptake into myogenic cells in culture
نویسندگان
چکیده
Eukaryotic initiation factor 3 (eIF3), encapsulated in liposomes, is taken up by chick muscle cells in culture. The exogenously supplied factor (isolated from 14-d embryonic muscle) rapidly associated with 40S ribosomal subunits and particles sedimenting at 80-120S (the known sedimentation value of myosin heavy chain [MHC] mRNPs). In addition, exogenously supplied eIF3 has a specific stimulatory effect on myofibrillar protein synthesis. This stimulation is most apparent at the onset of cell fusion and after the accumulation of MHC-mRNPs. As previously reported (8), total eIF3 can be fractionated on an MHC-mRNA affinity column into a "core" eIF3 and a high affinity component (HAF) which dictates the discriminatory activity of core eIF3. Liposome-encapsulated core eIF3 delivered to cells is found predominantly in 40S ribosomal subunits and gives only a slight stimulation of total protein synthesis. When 3H-MHC-mRNA, preincubated with HAF, is introduced into myoblasts via liposomes, the mRNA is found in heavy polysomes. On the other hand, when the messenger alone or with core eIF3 is taken up by the cells, it is found only on small polysomes. Similar experiments, using viral RNA with the HAF, show no increase in the size class of polysomes. These results mimic the differences observed between myoblast and myotube utilization of MHC-mRNA previously observed (17). These results demonstrate the mRNA discriminatory activity of specific proteins associated with muscle eIF3 and suggest that these proteins play a role in mRNA activation and translation during muscle differentiation.
منابع مشابه
Molecular Architecture of the 40S⋅eIF1⋅eIF3 Translation Initiation Complex
Eukaryotic translation initiation requires the recruitment of the large, multiprotein eIF3 complex to the 40S ribosomal subunit. We present X-ray structures of all major components of the minimal, six-subunit Saccharomyces cerevisiae eIF3 core. These structures, together with electron microscopy reconstructions, cross-linking coupled to mass spectrometry, and integrative structure modeling, all...
متن کاملHuman eIF3b and eIF3a serve as the nucleation core for the assembly of eIF3 into two interconnected modules: the yeast-like core and the octamer
The 12-subunit mammalian eIF3 is the largest and most complex translation initiation factor and has been implicated in numerous steps of translation initiation, termination and ribosomal recycling. Imbalanced eIF3 expression levels are observed in various types of cancer and developmental disorders, but the consequences of altered eIF3 subunit expression on its overall structure and composition...
متن کاملFunctional and Biochemical Characterization of Human Eukaryotic Translation Initiation Factor 3 in Living Cells
The main role of the translation initiation factor 3 (eIF3) is to orchestrate formation of 43S-48S preinitiation complexes (PICs). Until now, most of our knowledge on eIF3 functional contribution to regulation of gene expression comes from yeast studies. Hence, here we developed several novel in vivo assays to monitor the integrity of the 13-subunit human eIF3 complex, defects in assembly of 43...
متن کاملIn-vitro Transcribed mRNA Delivery Using PLGA/PEI Nanoparticles into Human Monocyte-derived Dendritic Cells
Induction of protein synthesis by the external delivery of in-vitro transcription-messenger RNA (IVT-mRNA) has been a useful approach in the realm of cell biology, disease treatment, reprogramming of cells, and vaccine design. Therefore, the development of new formulations for protection of mRNA against nucleases is required to maintain its activity in-vivo. It was the aim o...
متن کاملPlant initiation factor 3 subunit composition resembles mammalian initiation factor 3 and has a novel subunit.
Eukaryotic initiation factor 3 (eIF3) is a multisubunit complex that is required for binding of mRNA to 40 S ribosomal subunits, stabilization of ternary complex binding to 40 S subunits, and dissociation of 40 and 60 S subunits. These functions and the complex nature of eIF3 suggest multiple interactions with many components of the translational machinery. Recently, the subunits of mammalian a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 90 شماره
صفحات -
تاریخ انتشار 1981